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SUMMARY

The geometry of general three-dimensional bodies is generated from coordinates

of points in several cross sections. Since these points may not be smooth, they

are divided into segments and general conic sections are curve fit in a least-squares

sense to each segment of a cross section. The conic sections are then blended in

the longitudinal direction by fitting parametric cubic-spline curves through coordi-

nate points which define the conic sections in the cross-sectional planes6 Both

the cross-sectional and longitudinal curves may be modified by specifying particular

segments as straight lines and slopes at selected points, Slopes may be continuous

or discontinuous and finite or infinite,

After a satisfactory surface fit has been obtained, cards may be punched with

the data necessary to form a geometry subroutine package for use in other computer

programs,. At any position on the body, coordinates, slopes and second partial

derivatives are calculated

The method is applied to a blunted 70* delta wing, and it was found to generate

the geometry very wello
~;t'," v rC



INTRODUCTION

Many disciplines require a mathematical description c ........ ; -!n .

surfaces which cannot be represented by simple mathematical expressions. The

location and slopes of points on a body are.needed in the analysis o .oSC....~

and inviscid flow fields. Viscous flow-field analyses requile the body :urvatux

in addition to location and slopes. The geometrical properties of simple shape

like spheres, cones, ellipsoids, and paraboloids can be described by relatively

simple mathematical equations, However, many configurations of interest tsday,

such as the space shuttle, are complex three-dimensional shapes whose geometry

cannot be described easily. In many instances all the information that is given

is a drawing with a plan view, a side view, and several cross sections of the

vehicle. Sometimes models of a vehicle are available, and coordinate positions

can be accurately measured on them, On the other hand, slopes cannot be accurately

measured on a drawing or a model, and the determination of radii of curvature is

even less accurate. This report develops a computer program which will surface

fit mathematical relations to complex three-dimensional bodies The methud

yields accurate coordinates and slopes and reasonably accurate radii of curvature

at any position on the body,

Previous approaches to surface fitting three-dimensional bodies generally

divided the surface into "'patches" and represented each patch by flat surfaces,

cubic or higher order polynomials, or conic sections (eogo,, see refso 1-3s).

Each of these methods has undesirable features in the forms used previouslyo

Flat surfaces are completely unacceptable if radii of curvature or continuous

slopes are needed, Cubic or higher order polynomials often lead to unwanted

wiggles and bulges since they allow points of inflections, In ref, 3 this authoz

applied the metho.d of double splines, which used bi-cubic interpolation, to

surface fit the coordinates of points in several cross-sectional planes of
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three-dimensional.bodies, However, it wasfound that bulges and/or dimples

occurred in these surfaces, particularly when the thickness was much smaller

than the, span.

Reference 4 approximated .the shape of a space.shuttle orbiter with elliptical.

cross sections with different ellipticity on the windward'and leeward sides,

Cubic.polynomials were used to.define segments of the plan.and thickness .distribu-

tions0  The coefficients of these polynomials were chosen to make.the slopes

continuous across boundaries of the longitudinal segments. However, points of

inflections.were found to occur inside the segments and.thus gave.the undesirable

bumps, which in turn significantly affected the surface pressure and heating

distributions calculated with this geometry0

Conic sections have been used to describe segments of aircraft contours for

some.time (see.ref,:.l). Both longitudinal and transverse contours were represented

by conic sections, but the slopes at the ends,ofeach segment had to be measured,

As mentioned earlier, slopes :are difficult to measure accurately0  The present.

author developed a least-square curve-fitting technique (ref, 5) using general

conic sections for each segment .of a curve nL a plane,, Sinceall. data points are

not necessarily smooth, the curve was constrained to go through selected control

points (which are boundaries for each conic segment) but fit the remaining data

only in a least-square..sense0  In.addition,. the slope at each control point was

constrained to be continuous0  The results from this curve-fitting method were,

quite good '. Another feature of conic sections is that they cannot yield curves

with inflection.points, and this feature can be-a definite advantage If an

inflection point,.should be needed, then it could be..made:a control point with the

resulting curves.free of inflection points except at this control,pointo.

Coons (refo,2) .developed a sophisticated technique to.describe three-dimensional

surfaces by using blending functions to blend the surface between the boundary
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curves of each patch0 A major difficulty in applying Coon's method is that

the user must supply the coordinates, slopes, and twists (cross derivatives) at

all four corners of each surfacepatch. This information is generally difficult

to determine, particularly the cross derivatives (see ref0 6), Another disadvantage

of using Coons' method in computer applications is that 64 parameters are needed

to describe each surface patch, and for a large number of patches the amount of

storage required by the computer may be excessive.

The method presented here for surface fitting three-dimensional bodies is

somewhat similar to Coons' patching method, but it reduces the number of parameters

required to, describe a surface patch and is simpler to apply. Data points in

cross sectional planes are curve-fit in a least-squares sense by segments of general

conic.sections. The conic sections are then blended in the longitudinal direction

by fitting parametric splines through coordinate points which define the conic

sections in the cross-sectional planes. This technique has the advantage of

allowing the user to continually modify the cross-sectional curves and the

longitudinal curves until the body shape has the desired features0, Discontinuous

slopes in both the circumferential and longitudinal directions may be specified0

After the body shape has been modified to the final form, the variables

necessary to describe the shape may be punched on data cards, Then for applications

of the method, a relatively small geometry subroutine can be used along with these

data cards to calculate positions, slopeso and radii of curvature on three-

dimensional bodies0



a , b parameters defined by eqs8 (B5) - (B16)

Al A2 A3
coefficients of conic section given by- eq ; ,(18) in global coordinates,

A4, A5

A O B , C J coefficienetsc ofa:,cni' section given by. eq (1)-in local coordinates,

B parameter definedby eq (26)

d constant vector defined by eqo (20)
p

f body radius defined.by. eq. -, (22)

Gpq matrix defined.by eqo (21)

H .parameter defined by eqo (27)-

K data point number of first control point in segment.j

m i nj: slopes defined by eqs. (5) and (6)

N number of segments in a cross section

P i Q terms defined by eqs8 (A2) and (A3)

rj k residual in eqs, (BI) and (B2)

Rj term defined by eq8 (A5)

S- chordal distance between coordinates.

T" parameter defined by eq (25)

x, y, z Cartesian coordinates, see Figure 2

yO z local coordinates, see Figure 3.

a B~ yj coefficients defined by eqs. ..(15), (16), and (17)

gj slope of segment j, see Figure 5

JeAe 9 - e,
j j . j-1

circumferential angle defined by eq ..(23)

Subscrip ts

h intermediate point in a cross-sectional,segment
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j segment number in a cross section

k data point number in a cross section

r reference point

s slope point of a cross-sectional segment

o first control point of a cross-sectional segment

1 last control point of a cross-sectional segment

Superscript

* value where both R 0 and dR /dy =,0
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ANALYSIS.

For- atypical application, the geometry of a body must be determined from a.

model, such as a wind tunnel model, or a,three-view drawing, Generally several

cross,sections are'obtainable from the, model'or drawing, and the coordinates of

data points on the boundary of. these crosiasections can be measured orcalculated,

A-three-dimensional surface must-then be fit through all the body cross sectionso

Many times the data points in the cross sections are not completely smooth, and

in-those cases a smooth surface cannot be fit through all the data points, It

is then desirable to have a smooth surface pass through designated data points,

called control points, and pass, close to, but not necessarily through, the other..

data points6

In -the method presented here,. the ,data points in each cross section are

divided into segments and portions of general conic sections are curve-fit to

the data points .in each segment The data points at the ends.of each segment

are designated as control points, and the curve ,is constrained to go through the

control points as shown inFigure l A three-dimensional surface is then generated

by "blending" the cross-sectional curves.in the longitudinal direction, Consider.

first ,the technique 'for curve-fitting the. data points in a cross-sectional plane,

Curve-Fit ..in a Cross-Sectional Plane

As mentioned previqusly the data points,in a cross-sectional plane are

generally not-completely smooth' and in.those cases a smooth curve cannot be-

made -topas through every datapoint. Therefore, the data points are.divided

into segments, and aportion of a general conicsection is curve-fit in a least-

squares sense through the data points in that segment The curve is constrained

to go.through the control points (end points..of as.egment) and also have a,
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continuous slope at each control point unless the slope at a control point is

specified otherwise.

Define a three-dimensional coordinate system x, y, z with x in the longitudi-

nal direction and x = constant is a cross-sectional plane (see Figure 2), Let j

denote the segment number in a cross-sectional plane as shown.in Figure 1, with

the first segment starting on the positive y - axis and j increasing clockwiseo

For each segment.it is convenient to initially use a local coordinate system y,z

with the origin on the first control point and the positive y-axis passing through

the control point at the other.end of the segment (see Figure 3)° In this local

coordinate system.it is easy to investigate possibilities of complex roots.and

interpret the coefficients of a general conic section geometrically, whereas it

is difficult to interpret them geometrically in the global coordinates y-z,

For the jth segment -the equation for a general conic section is given by (refo7)

A y2 + Byz + C z2 + Djy + Ejz + F = 0 (1)

Only 5 of the 6 coefficients are independent.since the equation may be divided

by any non-zero coefficient. The constraints that the curve pass through the two

control points

y = 0, z=O and y yj , z.= 0 yield

F = 0 (2)

Dj - A yj (3)

By differentiating eq. (1), the slope in local coordinates is given by

dz Ayy - 2A y - B
dy Bjy + 2C z+E
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Although 'the slopes ,t the ends of the segments are generally not known, define

m d at y 0 z0 n Q (5)

and

n ( at y.- yj , z (6)

Using these two equations in eqo (4) it follows that

E3 Aj Yj/Inj (7)

and

B - A+- (8)

These results show that the end slopes do not affect the coefficient Cjo On the

other hands theproduct AC determines the: nature of the.general conicsection
i 2

(ref0 .7)o If B - 4A C~.- 0 the conic is a.parabola, if B - 4A C 0 the conic

is an ellipse, and if B 4A C 0 the conic is a hyperbola. Of particular

interest :is the possibility of complex roots when solving for z as a function of

y. in the region of interest,- It .is shown in Appendix A that z will have no

complex roots in the region 0 <y <y if

AC (A /mj)(A/nj) (9)

For prescribed slopes mj , n it is,interesting to observe how the product AjC1

affects a conic-section,'(See Figure 4)p

Unless a slope is specified at ,a control.point, the method used here constrains

the slope in global coordinates (y , .z) to be continuous at a control point, This

makes the, conic'isectionin one'seagment dependant on data points in other segments

as well as its owno From Figure 5 it can be seen that continuity of slopeat
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control point j requires

tan I nj1 = tan 1 m + ABej :

This equation can be expanded and earranged in the form

A (A/m) sin Ae + A cos Ae

1A/n)1  (A/m) cos .A0 -A sin ASG

This last equation is-non-linear.in the coefficients A , which would cause

difficulty, in obtaining a solution for them. However, as mentioned previously

only 5 of 6 coefficients-in a given segment are independent. This allows an

additional constraint to be imposed without'affecting the overall equation for

the general conic section. The additional.constraint used here is to equate

separately the numerators and denominators of both sides of eq, (11), This gives

two equations which are linear in the coefficients Aj , and which may be combined

to yield

(A/n)1  = (AjcosAj+1 -Aj+ 1 ) /sinAGj+1 (12)

(A/m) = (Aj1 -AjcosAe) /sinA6 (13)

For the first segment (j = 1) mI is specified and equation (13) is not needed,

and also for the last segment (j = N) nN is specified and eq0 (12) is not needed:

Now substitute eqs. (2), (3), (7), (8), (12), and (13) into eq0 (1) to

obtain-the equation for the conic sections as

jAj~- + jA + yjA + y2C =0 (14)
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where

(y -zy)/sinAe% for j >.I

0 for j =.1

2 v
y -(1/ml + ct62) + j z/ml-jy for j = i

8j y +(cotAe -cotAej+l)yz - cothejyjz-yjy for I < j < N (16)

y2 +(cotAeN-1/nN)yz - cotAeNYNz - yNy  for j c N

yz/sinASB+ for j < N

0 for J N (17)

These results indicate that .there are only -two unknowns in each segmento Aj

and Cj However, there is one more segment than interior control points which

means one 'of,.these coefficents is arbitraryo Here A = 1 is used arbitrarily

(unless the conic section. requires A1 = 0) and.the independent unknowns become,

Cl, CJ A (j 2,2Poo N)o If there were as many data points as unknowns and

if.someconic section could. be made to pass, through these data points, then

eq8,(14) could be-applied to all the data points.to give (2N-1) linear equations

for the (2N-1)coefficients C1 , Cj, Aj for j - 2,oo , No, Howeverothere aTe,

generally more than (2N-1) data points, and if eqo (14) were applied to all of

them an overdetermined system of linear equations (see refo 8) would result,

Therefore, a.least-squares solution of the overdeterminedsystem is.used to

determine the coefficients Ci; C-; A for j 2 °0, No This procedure is

described in Appendix B0  After obtaining the coefficients in this manner, the

inequality of.eq,-(9) is checked for the possibility of complex roots for z in

each segment6 If the inequality.of eq0 (9) is not satisfied the coefficient C.
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in.that section is replaced by the value obtained using the equality sign in

eqo.(9).o As mentioned earlier, the coefficient Cj does not affect the slopes of

the curve at the end points of the segment, and hence C, does not affect other

segments. The equality sign ineq. (9) gives 2 straight lines as shown in

Figure 4o

In order to solve for z as a function of y from eq, (14), a quadratic

equation must be solved and the proper choice of the + or - sign must be

determined beforehand for each segment, It is shown in Appendix A that in order

to make z = 0 at y = yj (a control point at the end of segment J), the + sign

must be used if (A/m) > 0 and (A/n) < 0 , and the - sign must be used if (A/m)j~<0

and (A/n)j > O*

Once the coefficients A and C are determined, all the conic sections are

completely defined for a given cross-sectional plane0 In order to put these

results ipto a form.suitable for "blending" the cross sections in the longitudinal

direction, the conic section for each segment is redefined in terms of 4 points

- the two control points at the ends of the segment, a slope point which determines

the slopes at the end points, and finally an intermediate point on the curve

between the end points(see Figure 6). The 3 points on the curve and the two

slopes at the end points of a.segment are sufficient to determine new coefficients

A1 p A2 , A3 , A4 , and A. for the general conic section,

A1y
2 + A2 + A3 2 + A 4 + A5z + i = 0 (18)

*Note that in order.for a.conic section to pass through the control points,
nj <0 if mj > 0 and nj > 0 if m < 0.

**Note that the conic section given by eq. (18) must have the constant 1 replaced
by 0 if the curve is to pass through the origin y 0 , p.Z 0o
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in global coordinates y,z. (see ref.o 1), This process is done for each segment

in a cross section,and the 5 coefficients will become functions of the longitudinal

coordinate x_when blending a segment ofa cross section with corresponding segmen's

in the other cross sectionso

Longitudinal Variation of Cross Section

In order to determine the longitudinal variation of-the coefficients in

eq. (18), a three-dimensional curve is fit through.each.of the 4 points used to

define the conicsection of corresponding segments (see Figure 7), In contrast

to the crosssectional data points, these curves must pass through each of the

points in the longitudinal direction, They are represented by their projections

in the x-y and x-z planes; hence, two planar.curves are used to represent each

three-dimensional curve, The parametric method of cubic splines (ref, 9) is

used to curve-fit each planar curve, with the chordal distance between the

coordinate points-as the parameter. The-parametric spline allows infinite slopes

whereas the regular spline will not. To facilitate the application of the splines,

slopes.in the longitudinal direction are calculated at each cross section from

the parametric splineo Then for the region between two successive cross sections,

the y and z coordinates of.a three-dimensional curve are represented by cubic

polynomials in-x with the coefficients determined by the coordinates and siopes

at the two cross sections, When the slope of a coordinate at a cross section is

infinite, then that coordinate is represented by a conic section for the region

between that cross section and the one following ito If a longitudinal curve

should not.give the desired variation, slopes at selected cross sections may be

modified by the user,.

Consider.now the longitudinal variation of a conic section In each cross-

sectionalplane, eq, (18) will hold but the coefficients Al, A2, A3 A 4  and A5
will vary with x, As mentioned previously, these coefficients are deter-mined

13



by 4 defining points (the two control points, an intermediate point, and the

slope point)o For each segment, the 5 equations used to determine the coefficients

A (q=l1,-. , 5)are formed by applying eq..(18) to the 3 points on the cross-

sectional.curve -- the two control points yo; Zo and yl1, " , the intermediate

point h, Zh -- and the slopes at the ends of the segment using the slope point

yS zs (see Figure 6). This procedure yields the following 5 equations,

5

I' G A = d p P = l~0 0 , 5 (19)
q=l pq q

where

-1

-1

d -1 (20)

-2

-2

and

-2 - -2
YO yz z y0ooo o

-2 - -2
Yl Y1z1  Z1 Y1 zl

G = -2 -2 (21)
pq Yh Yhzh Zh Yh Zh

2oYs  (Ys+Y ) 2zs ) (o+s)

2Y;Ys  (1 ssl) 2l (1+ s) ( l+z s

*The two equations for the slopes were combined with the first two equations
(p = land 2) to obtain the last two equations (p = 4 and 5)e
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At any longitudinal position, eq. (19) can be solved by any standard matrix

inversion routine, such.as SIMEQ on the.CDC computer and SIMQ on the IBM computer,

2 -2to determine the, coefficients.A o .- The derivatives dA /dx.and d2A dx can be
Q q q

obtained by differentiating eqo '(19) and successively solving the resulting system of

linear equations. The elements of G and their,derivatives with respect to x
pq

are obtained from the three-dimensional curves which were spline-fit through the

4 points used to. define the conic section for that segment in each cross-sectional

plane0

Geometry in Polar Coordinates

For some.applications.it is convenient to express the geometry in-polar

coordinates x, f, and 4 where f = f(x,O) is the radius in-a cross section measured

from a reference point yp z ioeo

f =[(G r )2 +(z-zr)2 1/2 (22)

r r
The reference point may be taken as yr = 0 * zr 0 , but in some eases f is not

single valued unless a reference point is.chosen off the x axis, The angle 4 is

given by (see Figure 8)

-1
* = tan. [(z-z )i(y- )] 0 < 2n (23)r r

with = . corresponding to the line = z r and Y-yr > 0 o Since y-Yr =f cos

and z-r = f sin4 , eqo (18) in polar coordinates becomes

Tf2 + Bf + H = 0 (24)

where.

T = Al cos2 + A2 cos sin + A3 sin 2 (25)

B = (2A1 r + 
2A2zr + AQ)cos + (2A2yr + 

2A3 z + A5)sin (26)

-2 -2H = A12r + A2- zr + A3zr + A + Ab5r + 1 (27)
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Figure 8 illustrates the polar coordinates in a cross sectional plane,

When solving eq, (24) for f from the quadratic formula, the + or - sign

must be determined beforehand. To determine it, apply eq, (24) to the control

point at the end of the segment (j-l), where f = fj and = are known, to obtain

H = -Tf - B f (28)i J i J

Substitute H from this equation into eq. (24) and solve the resultant for f from the

quadratic formula to get 1/2
-B+[B 2+4T(T f 2 + B f )]

f 2T for T # 0 (29)

Now when T=T and B=B , eqo (29) gives f-f if the + sign is used when B +2Tj f > 0

and the - sign when B +2Tj f <0 . At this longitudinal location, this same sign

is applicable for any other value of P within the circumferential boundaries of

this segment, In general, the sign must be determined at each longitudinal position,

The derivatives a f/3x , a f/a, z2f/ x2 , a2f/ 2 ;2f/a , and even higher deriva-

tives, are obtained by differentiating eq, (24). Note, however, that the coefficients

A1, A2 , A3 , A4 , and A5 are functions of x . These coefficients and their derivatives

are determined by the method described in the previous section,

COMPUTATIONAL ALGORITHM

Given the set of data points (yk,zk) in cross sectional planes at several long-

itudinal stations.

(1) For each cross-sectional plane, divide the data points into segments so

that a conic section can be curve-fit to the data points in each segment

by the least-squares technique developed hereino

(2) If the curves fit to the cross sectional data points are not satisfactory,

modify them by one or more of the following methods: (a) define new

boundaries (control points) for segments, (b) specify slope(s) at control

point(s) (slopes may be finite or infinite and continuous or discontinuous),
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(c) specify selected segments as straight lines, (d) a specific onic

section can be-specified for a segment'by prescribing the slope.a the

ends of the segment and-using only one.datum point-between the end c~ntrol

points,

(3) Represent the,conic, section for each segment in a cross-sectional plane in

terms of:the two control points at the ends of the segmento, an intermediate

point, and the slope point (see Figure 6).

(4) For each point found in step (3), spline-fita three-dimensional longitudinal

curve through it and the corresponding points in other cross-sectional

planes (see Figure 7).

(5) If the longitudinal curves are not satisfactory, modify them by one'or more

of the following methods: (a) specify slope(s) at longitudinal station(s)

(slopes may be.finite or infinite and continuous or discontinuous), (b)

specify selected longitudinal segments as straight lines,. (c) redefine

the boundaries (control points) of the segments in the cross-sectional planes

so that the points used for the longitudinal spline-fit form a smooth curveo

(6) The geometricalproperties of the surface may be computed in polar coordi-

nates at any position x, by the .following steps,

a) Locate x between two consecutive longitudinal stations,'and then

locate the cross-sectional segment which contains 0,.

b) Use the spline function to calculate the coordinates, slopes, and

secondderivatiyes of the 4 longitudinal curves for this segment ai

Y (see Figure 7),

c) Calculate the coefficients A (pl,~,5) of the conic section at this

location by use of eq,(19). Determine the first and secQnd derivatives

of:A with respect to xfrom the first and second derivatives of eq-

(19).
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d) Calculate the body radius f from eq0 .(24), and the derivatives

a f/x, a f /, a 2 f /a 2  a 2f/4 2 a 2 fax 8. , fi i n /ahiher

derivatives from derivatives of eq0 (24)°

(7) After a satisfactory surface fit has. been obtainedo the data whi Ch n bc

retained for a geomettry subroutine package are the coordinates and icngi

tudinal slopes of the longitudinal curves at-thoselongitudinal stations

where cross-sectional data points were given, Then,'the geometrical

properties of the surface can be calculated at any position by the method

outlined in Step (6) above

AppendixC describes a computer program written for the IBM 360/175 computer

to perform this computational algorithm. This appendix also describes the input

and output data for the program

APPLICATION TO 700 DELTA WING

The surface fitting method developed herein is.applied to the 701 slab delta

wing shown in Figure 9, The computer program described in.Appendix,C was used to

calculate the results, which are presented in Appendix D0  This example was chosen

because it ..illustrates many of the,options available to modify the longitudinal

curves and.because the results canbe compared with anexact solutiono

Cross-sectional data are input at the 3 longitudinal stations shown in Figure 9

and, due to symmetry, only the first quadrant is used0  Two segments (three controi

points) are needed.to represent the cross section at .x=10 The first segment is a

straight line and the second is one-fourth of an ellipse. The least-square turve-fit

technique represents the ellipse exactly by specifying a zero slope at control point.

j-2, an infinite slope at control point j-3p and one datum point between theoe two

control points0  Although two segments must also be used for the-other two croS se- ,

tions, only one segment is necessary to specify the circle at-i=0,65798 and th
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ellipse at .x-l=O, Therefore, .thefirst two data points which..are also control points,

are made coincident., Then the exact curves are calculated from.the least-=quae:icurve-

fit-by specifying a zero slope at -control point j=2, an infinite slope-at centrol

point j3, and one.datum point between these two. control-points,. The exact location

of-this datum point is irrelevanteexcept that it must lie on the ,desired curve",

Recallthateach three-dimensional longitudinal curve ip'represented by its

projections in the x- yand..x-z planes, Therefore, 16 longitudinal planar curves are

used for this example (8,for each cross-sectional segment)0 Modifications,are made

to the,initial spline fits to 14 of these curves since their exact shapes are readily

obtained from Figure 9. The initial spline fit to the curves z1 for segment .1 and y1

for segment 2 are correct, and thus no modifications are necessary for these two

longitudinal curves.

The geometrical properties f and its derivatives are listed ,in AppendixD for

the circumferential angles = 0, /6 , w/3 , and r/2 at x=0,3, ,~ 2,0, and 5.

The results at x=lO, 2.0, and.5.0 are exact (Vithinthe accuracy of single precision

on the,IBM 360/175 computer), whereas some, inaccuracies are noted.ati03 0  Here

the cross section is a circle, thus-the exact solution gives aBf~8=0, 3 2 ff-3 =0

a2f/a ~ 0, and the derivatives af/a. and a 2f/;2  should be independent of *0
The surface fit could bemade.nearly exact at all positions by modifying the slopes

of the longitudinal curves yh and zh for the second cross-sectional segment at

x=0-65798.

CONCLUDING REMARKS.

An algorithm has been developed for surface fitting three-dimensioal bodies,

Data.points in several cross-sectional planes of abody are required as input .data0

The data points ,in each-cross sectionare then divided,into segments, and a least-

squares technique is used to curve.fit portions of general conic sections to the
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data points in each segment, The longitudinal variation of.the cross sections is

established by fitting parametric splines throughthe coordinates of points used to

define the conic.sections in the cross-sectional planes,. If the surface fit is

unsatisfactory, it can be modified by specifying slopes at the ends of segments or

requiring selected segments to be straight lines0  The surface geometry can bct .be

analyzed through theuse of an interactive computer graphics environment0

After a satisfactory surface fit to the body has been obtained, data cards can

be punched and used with some of the subprograms to form a geometry subrzutine

package., This package is convenient for use in other computer programs requiring

a mathematicalmodel of the body geometry8  It will calculate the body coordinates,

slopes.and second derivatives. Computationaltime is..short, and the amount of

storage required is relatively small. The calculated data could also be used aa

inputdata for Coon's patching method (ref. 2), if the user should desire to employ

that method-in.place of the one developed here,
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APPENDIX A

Solution for Conic Section Equation

Substitute eqs., (2), (3), (7), and (8) into (1) to obtain the conic

section in, the form

c- 2 + P j + o (A)

where

P - [(A/m)] + (A/n) ]y + (A/m) . yj (A2)

and

Q i" Ay(y-yj) (A3)

The solution of eq. (Al) is

z = (-Pj + R1/2)/(2Cj) for Cj #~o (A4)

where the discriminate is given by

R P - C j  (As)

In order to obtain real.roots for z from eq. (A4)., eqo (A5) must givd

R >- 0 for 0 < y <yjo

First, note that eq.(A5) gives R > 0 when A C > 0. Also

2 2
R (A/m) y2 > 0 at y,- 0

and

R- (A/n) y > 0 at y = y
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'Thus the possibilities are illustrated below.

R R

0 y cyy 0 r....ange of

real roots, R > 0 complex
roots

The minimum value of.. A C which still gives real roots corresponds to the

case illustrated below

R

0 y
Y Yj

The minimum value of R occurs at y = y (0 < j) where both R5 - 0

and dR /dy = 0. The solution of R = 0 and dR /dy using eq,.(A5), yields

the -minimum value of :A C as

(A-C )  -(A/m)j (A/n) (A6)

Thus eq. (A4) will yield real roots for z if

ACj > (A/m) (A/n) (A)

The choice of the .siga to be used in eq (A4). is determined by requiring

the equation to satisfy thei coorinate of the control points a = 0 y ; 0
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and;z = 0 , y = y . For -the first-control point, y = 0 in eq0 (A4) gives

2 2 1/2
-(A/m) y +. [(A/m) y 2]

... , J J (As)2C

and then z = 0 requires the + sign if (A/m) > 0 and;the - sign if (A/m),. < O

At.the second control point, y = yj in eq. (A4) gives

(A/n) y + [(A/n) y ] 1 / 2  (A9)

~Z 2C

and z-= 0 requires the - sign if (A/n) > 0 and the + sign if (A/n)j < 0o

These conditionsare all compatible because a conic section passing through

the two control points will have n < 0 if m > 0 andnj > 0 if m < 0. The

sign.given by these conditions can be.used:in eq. (A4) for all values of yin

the range 0 <-y < y
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APPENDIX B

Least-Squares Solution for Conic Section Coefficients

Eq. (14) cannot generally be satisfied at all data points because

there would be more equations than unknowns. Accordingly, eq (14) is applid

at data point k and rewritten as

jkAj-1 + aj,kAj + Yj,kAj+l +k = rj,k ()

where a ij,k jk 9 and Yj,k are the values of ca , $j, and 'yj evaluated

at y = yk , z = zk in segment j; and rjk is called the residual. The least

squares solution of the overdetermined system of equations determines the

coefficients C , C , A (j=2 , o,N) which minimize the sum of the residuals

squared (see ref. 8).

Define K as the data point number which corresponis "to the first control

point in segment j. Square eq. (Bl) and sum over all the data points in

continuous segments j=l, °°°,N to obtain

N K +12 2 N K+1
[ a A- + "kA + Y kA + k c j1 i r 2 (B2)

j=l-1 k=K. j= K

The right side of eq. (B2) is minimized by the system of equations obtained by

setting partial derivatives of eq. (B2) with respect to the independent

coefficients equal to zero. The result of setting partial derivatives with

respect to A2, o ,AN equal to zero gives the following system of equations

a A +a A +a A + a A
m,l m-2 m,2 m-1 m,3 m m,4 m+l

+ a A + a C + a C + a C
m,5 m+2 m,6 m-1 m,,7 m m,8 m+l

m = 2,"*,N (B3)
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The result of setting partial derivatives with respect to C ,"CN equ.al to

zero gives the following additional system of equations

b A 1 + b 2A + b -,A + b C =.0
m,l m-1 m,2 m m,3 +1l, m,4 m

m 1,*lo ,N (gB4)

The combined system of equations, ie., eqs. (B3) and (B4), gives a system of

(2N-1I) linear: equations for (2N-1) coefficients. The parameters used in Oeqf,,

(B3) and (B4) are defined as follows:

K
m

am, 1 a y (Bs)
k-aK . m-l,k .m-lk

K K
m m+1

am,2  m-l, k m1,k tmk am,k (B6)

a Y 2 + 2 + 2 (B7)m,3 mm-l,k mk kKm+l m+lk
kK 1  k-K k-K

Km+l K+2

m,4 m,km,k + m+,k a+lk (BB)
kK - k=Km m+ l l

KKm+2
a M,5 m+l,k m+1,k (9)

K
m 2 (IO)

am, 6  . Yk Ym-l,kk-K
rm-1

m+1 2

a , k m,k (s11)k-K m
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K
a +1 M , 2 o(B!2Z
m,8 k m+tkk=K

b, = a (B13)

b = a (B14)

m,3  m+l,6

K+l

b = K+y (B16)
b,4 - Yk

k-K,m

Note that if slopes should be specified at selected.control points, then

the least-squares solution describPd.above is applied .to the segments inbetween

two consecutive .control points with specified slopes0 The minimum number of

data points (exclusive of the control points) that.can be used in the least-

squares solution is one in the. first segmaent and two in each of the following

segments. Any conic section can be prescribed for a segment by specifying

the slopes at the ends of the segment and one datum point on the curve between

the two control points, In this case eq. (4) for m=l is the only equation to

solve, and the least-squares technique determines the conic section which satizfie

the specified conditions, provided a conic section can be fit through the

prescribed slopes and datum point.

In the solution of the combined system of eqs0 (B3) and (B4), the terms

+l,k and YN+l,k must be interpreted as zero, Hence, the coefficients Ao,

AN+St and AN+ 2 do not appear in the resulting system, and recall that A = I

unless the conic section should require A1 = 01
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APPENDIX C .

Description of Computer Program-

Two computer programs are described here. The first determines -the body

geometry and allows modifications to be made to cross sectional and logitudinal

curves until a satisfactory geometry is achieved. The second program uses data

cards punched from the.first program along with some of .the subroutines to form

a geometry subroutine package for use.in other computer programso Both computer.

programs are written in FORTRAN-IV for the IB360/175 computer, but-with a small

number of: changes they can be. used on the. CDC , computerso

Program for Determining Geometry

The following subprograms are, called from the main program or its sub-

programs: GEM, INGEO, LSTSQ, FZ, SPLX, SPLINE, FCN, DERIVY LINEQ, and SIMQo

Geometry Subroutine Package,

After the Prpgram for Determining Geometry has been'modified to.yield a

satisfactory geometry, cards are punched-by, setting NP-1 in the input. data

(see Description of Input). Then these data cards along. with subprograms GEOM ,,

FCN,. DERIVI, LINEQ, and SIMQ form a geometry ; subroutine package which can be

used in other computer programs for determing the. body radius and its derivativep

at prescribed locatidons x and * D The statements necessary to use this geometry

subroutine package in ,.another computer program are given below under ,the listing

of the Main Program for Geometry Subroutine Package

Main Program for Determining Geometry,

This main program calls subroutine INGEO which, in turn, calculates all the

parameters necessary to describe the geometry, .and punchesthis -information on ,cads -

if desired. The body radius F.and its derivatives FX, FP, FXX, FPP, FXP are,
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calculated at prescribed locations x and , and the geometry is analyzed

to see if it is satisfactory. Modifications are made to the geometry -mic .t

is satisfactory.

Main Program for Using Geometry Subroutine Package

The main program of some other computer program which uses this geome try

subroutine package should have the COMMON and READ statements shown in th progra

listing., A CALL statement to calculate the body radius and its derivatives at

prescribed values of x and 0 is also listed.

Subroutine GEOM(XX,.PH, YR ZR, F X, FYP, FXX, P??P, FP )

At a given location (x, *) and reference point (yr zr), this subroutine

calculates the body radius and its derivatives.. The arguments for this subroutine

are:

xX, PH x, #

Y1. ZR Yr' Zr

F, EX, P f, 8f/8x , af/89

,.FX , FPP, -. f. / , 2f//a,,2 B2f//1' x

Other program-variables are:

CP? SP cos , sine

T, B, H.. parameters defined by eqs. (25), (26), and (27)

TX, TP BT/ax , aT/30

TXX, TPP, TXP 82 T/8x 2 , 82 T/80 2 , 82 T/axa

(similar definitions for BX, BP, etc.)

This subroutine is called from the Main Program.
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Subroutine INGEO

This subroutine reads part of the input data and -calls other subroutine

which read the remainder of .the input data. When prescribed, it also punche s

cards with the, data necessary for the Geometry Subroutine Package. Program

variables are described in Description of Input and Output, and subroutines

LSTSQ, SPLX,. FCNi and DERIV, :This subroutine-.is called from.the Main Program

for Determining Geometry.

Subroutine LSTSQ (IT. NY)

This subroutine reads input data pertaining to a cross section-and applies-

the least-squares -technique described herein to determine the -conic sections fqr

each segment of the cross section :The dummy arguments -for this subroutine are;

IT longitudinal station number

NY type of nose specified (see Description of Input)

The variables involved-with the READ and WRITE statements are defined in the

Descriptions, of Input and Output , Other program variables are

A(1),, B(I), C(I), D(I), E(1), GN(I), } See Description of Output
YY(IT,, J, K)'

AM Aj/mj in eq, (9)

AN A./n. in eq0 (9)

AMN (A,/mj)(Aj/nj) in eq0 (9)

AL, BET, GA aj,k Bj,k and Yj ,k in eq0 (Bl)

BM(I), BZ(I). Calculated yl zcorresponding ,to input data points

CAC. AC

G(I,J) coefficient matrix for the system of eqs0 (B3)and (B4) plus
the equation A(1) .1.
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A(I) initially constant vector for the right side of the system
of equations GX=A. After calling SIMQ the solution vector
X is stored in Ao

XC(J), YC(J) y and z coordinates, respectively, of control point J

ZM, ZN slopes m and nj in local coordinates

If inequality in eq (9) is not satisfied, the message CAC LT AMN is printed

along with the value of AMN and I. Then Cj is replaced by the value obtained

using the quality sign in eq, (9).

This subroutine is called from subroutine INGEO only,

Function FZ(XX, I, JJ, XXB, YYB)

For a given cross-sectional segment and local coordinate y,.this function

calculates z(=FZ) in local coordinates and then transforms the point (y,z) to

global coordinates (y, z). Eq, (A4) in Appendix A is used to calculate z, The

arguments for this function are

XX value of local coordinate y

I segment identification no.

JJ segment number

XXB

YYB

This function is used in.subroutine LSTSQ only.

Subroutine SPLX(NY,NJ)

This subroutine fits a cubic spline through longitudinal points to form

longitudinal curves. The initial spline fits may be modified by specifying slopes

or straight-line segments at selected longitudinal stations0 See Description of

Input Data for variables in READ statements. The arguments for this subroutine

are:

NY nose shape (see Description of Input)
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NJ number of longitudinal curves to be modified

Other program variables are-

YXL(I.JK) left-handed slope
ode Description of Output

YXR(I ,JK) right-handedslope J
XP(I), YP(I) parametric slopes dy/dS and dildS where.S is the chordal

distance between data points-

This subroutine,,is called from subroutine INGEO only.

Subroutine SPLINE (HDEYAMEG, N, FP)

For an- array of dependent variables, this subroutine solves the tridiagonal

matrix system of algebraic. equations to- determine the coefficients and slopes

for the cubic: spline function as described- in ref.' 9. The dummy arguments for,

this subroutine are

H(J),, array representing difference. between-J+1, andin epeindepedent
variables

DE(J) array of dependent .variables

K-. number of points,, 1 J < K

AM(J) array of-coefficients for spline-function (second derivatives-
ateach point)

E,G slope at'-the first-and end.points, respectively

N, flag to, describe end conditions of spline fito

N -2 indicates AM(2) = AM(l) and AM(K-1) ,AM(YC)
are used in place, of.specifying E and G

N e -1 indicates AM,(1) " 0 and AM(K) - 0 are.
used in place of specifying E and G

N = 0 indicates E is specified but AM(K-1) - AM(IK)
is used-in-place.of specifying G

N =- 1 indicates both E and G..are specified

This -subrputine is..called- fromsubroutine.-SPLX only,
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Subroutine FCN(I J XX)

This subroutine calculates the y and z coordinates cf 4 i'nL6

by using a cubic variation in x between longitudinal stations, gS r

derivatives of these coordinates are also calculated, The coefrici.,

cubic variation are determined by the coordinates and slopes at thn L.vv .

s-cations which surrouna the longitudinal position XXc If the slopa >

1al station just aft of XX is infinite, then the conic section

Ay 2 = A~x + BAx
2

is used for this segment, where

Ay = y - y(I-l) and Ax = x - x(l-i)

The coefficients A and B are determined by requiring the curve to pass tw .

coordinates at stations I and I-1 and have the prescribed slopes at Lhess ..-

The arguments for this subroutine are

I first longitudinal station which exceeds XX

J cross-sectional segment number

XX longitudinal position x

Other piogram variables are

YXR(I,J,K), YXL(I,JK) See Description of Output

YY(I,J,K) See Description of Oucput

YL(LM,N) pa.ameters which are calculated at x XX dwn-

L 1 to. y and 2 for z

M i for y (z if L = 2)

M 2 foL yl (zl if L = 2)

M = 3 for yh (zh if L = 2)

M = 4 for ys (z if L = 2)- (see Figure i)
S S

N 1 for coordinate, 2 for derivative of C
respect to x, and 3 for second deiiac~iv

This subroutine is called ftrom subroutines INGEO and GEOM,
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Subroutine.DERIV.

This subroutine uses the -parameters YL(L,M,N) calculated in subroutine FCN to

calculate the ,coefficients.A (p-l, ... 5) and their. longitudinal derivatives from

eq. (19). Program variables are

AA(I). initially dp as given by eq. (20) ,after calling SIMQ it'
becomes A 6

p
AX(I), AXX(I) dA /dx , d2A /d2

p P

G(I,J) Gpq (see eq. (21))

GS(I,J) temporary storage for G(IjJ)

GX(I.,J), GXX(I,J) dG pq/d ; d2Gpq /d 2

YL(LM,N) see description in subroutine FCN

This subroutine is called from subroutines-INGEO and GEOM If,the conic section

should bea straight line, the determinant of G is zero, and the solution is obtained
pq

from.subroutine LINEQo.

Subroutine LINEQ (G,AA)

This subroutine solves the two linear equations

G(1,4) X(1) + G(1,5) X(2) = AA(1)

G(2,4) X(1) + G(265) X(2) .AA(2)

for X(1) and X(2) and then stores the solution inAA(1) andAA(;)o .The parameters

AA(3), AA(4), and AA(5) are set.equal to zero. If the determinant of the coefficients

of the two equations above should be zero, the message "DENOM IN LINEQ IS 01" is

printed. This subroutine is called from subroutine DERIV whenever the conic section

is,a straight line,

Subroutine .SIMQ (GANKKS)

This is one of the scientific subroutine packages in the IBM library to solve a

system of linear equations,GX-A. For the CDC computer, this subroutine may be

33



replaced by SIMEQ, The arguments for this subroutine are

G(I ) coefficient matrix in system GX=Ao

A(I) vector A in the system GX = A, On return to calling prcg a; rhs
solution vector X is stored in A.

N the maximum order of G as stated in dimension statement z
calling program

K the order of.G; 1 < < N

KS- flag to indicate a solution is obtained or not. KS-1 indica~
no solution,
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Appendix C (Continued)

Description of -Input

The input data for the computer program are described in the following steps

which are also in-the proper-sequence.

Step 1.o

READ, (1,100) NAM

100 FORMAT (20A3)

READ (1,102) NY, NX, NCT, NJ, NP

102 FORMAT (515)

The .read.statements for this step appear in subroutine INGEO.

NAM name used for body designation

NY 1 for blunt nose, 2 for sharp pointed nose, 3 for cut - off..nose

(i.e. the body radius is non.-.zero at the nose)

NX number of longitudinal stations where cross sectional,data-are to

be input. The nose station is included in NX although cross sectional,

data are not required there for blunted and:sharp-pointed noses,

NCT number of control.points specified for all of the cross sections0

Some control points may-be made coincident.if a cross section-should

require less than this number of control points0

NJ number of longitudinal curves to be modified by specifying slopes

or straight lines at Selected longitudinal stations. Note that.

there are 8 longitudinal curves for each segment in a.cross section

since the 4 three-dimensional curves shown in Figure 7.are repre-

sented by their projections in the x -.y and x -,z planes. Also,

note that the longitudinal curve through control points is common to

adjacent segments, and modifications made-to it must be input for

both segments.
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NP if cards are. to be punched with the data necessary to use a geometry

subroutine in some other computer programeNP=1 o If cards are. not :o

be punched NPB 1l

Step 2.

The 4 following statements are listed in subroutine INGEO

DO 2.11, NX

READ (1,103) X(l)

103 FORMAT (F10o5)

2 CALL LSTSQ(IiNY)

The statements below appear in subroutine LSTSQo

READ (1,101) N,NLTi NST, N2T

READ (1,101) (NC(J), Jul, NCT)

101 FORMAT (1615)

IF (NLT.GT.O) READ (1,101) (NL(IL), IL=1, NLT)

IF (N2T.GT.0) READ (1,100)(N2(12), DX2 (I2),DY2(I2),12=a , N2T)

IF (NST.GT.O) READ (1,100) (NS (IS), DXX(IS), DY(IS), IS=1,, NST)

100 FORMAT (15, 2F10.5)

READ (1,102) (XB(K), YB(K), K=1,N)

102 FORMAT (8F10.5)

RETURN

The read statements in this step pertain-to-the information necessary to zstab-

lish the curves in.each cross sectional plane.

X(I) value of x.at longitudinal station I, where =1, ooo, NXo

The information listed below is not required for the first longitudinal station.

(I=1) onblunted and sharp - pointed noses.

N number of data points for this cross section., This number mPy vary
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from one'cress section -to.another.

NLT number of segments to be specified as straight lines .

NST number of control points where left. - handed ,slopes are to be.

specified

N2T number of control -points where right - handed slopes are to be

specified

Note: The left - handed elope ,at a:control point.is defined as the -slope,.

in global ::coordinates (y,z),of-the segment which ends at the control

point,, whereas the right.- handed slope is defined as the slope of the

segment which begins at the control point. If the slope 'at a

control point is continuous, the left. - handedslope,is the same asa.

the right - handed slope. A left - handed slope may be specified at

control point NS(IS), as d /dj a DY(IS)/DXX(IS), and this value is

also. used. as the -right -- handed slope there unless a right 7-

handed slope is specified or a straight - line segment begins -there°

A right - handed slope may be-specified -atcontrol point N2(I2) as

dz/dy -DY2(12)/DX2(12), provided a left - handed slope has already

been ,specified at this same control oint,0 Discontinuous slopes --

at- the beginning or end of a straight - line segment are specified

by. 4/dy -. DY(IS)/DXX(IS), at control point NS(IS). Slopes are

specified in global coordinates (ys) by asnumerator and.a denomi-,

nator so that zero and infinite slopes may be input The first segment

of a cross 'section (J1-) must be either.a straight line or have the

slope specified there [by dl/dj = DY(IS)/DXX(IS) I . Also, the last

segment (J - NCT'-l) must either end.with a straight line.or have- the

slope specified -at.the last control point (J N ACT) by d/d'

DY (IS) /DXX(IS) .,
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NC(J) data point number -to be 'designated a control .pointo The rfa an ,.e

data points must be control pointso and also NC(J+I) NC(J)

NL(IL) number of a segment -to be designated as a straight 'linea

N2(I2) control point .number-where a-right - handed,slope is specified,

(see note above)

DX2(12) denominator of right - handed slope di~/ ld at control point N2(12),

DY2(12), numerator of right --handed slope dz/dy at control.point N2(12).

NS(IS) control point number where a left - handed slope is specifiedo

(see note above)0

DXX(IS) denominator of left - handed slope 'd/dy at control point NS(IS),

DY(IS) numerator of left - handed slope di/dy at control point NS(IS)

XB(K) y coordinate of 'input data point K.

YB(K) z coordinate of input -data point K.

If this computer program is to be used with the body geometry

expressed :in polar coordinates, the first data point.(K = 1) must be

on the line € - 0 and succeeding data points should have (K+lI);- (K)

relative to the reference point yr zr (see igure 8).

The, read statements in this step read data for all the cross sections before

proceeding to, Step 3.

Step 3.

The following read statements are listed:in subroutine SPLK and represent mnodi

fications'to the longitudinal curves. If no longitudinal curves are to be

modified from the initial spline fits then. NJ 0 should be input in Step I

and the read statements in thi step will be by - passed.
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IF (NJ.EQoO) RETURN

DO 17 IJK = 1,. NJ

READ (1,100) J,K, MLT, MST, M2T,-MIT

100 FORMAT (1615)

IF (MLT~GT.0) READ (1,100) (ML(IL), IL = 1, MLT)

101 FORMAT (4(I10,iFb05))

IF (M2T.GT.O) READ (1,101) (M2(12), DY2(I2), 12 l1, M2T)

IF (MSToGToO) READ (1,101) (MS(IS), DYX(IS), IS 1 lMST)

IF (MIT.GTO). READ (1,100) (MI(IT), IT - 1, MIT)-

17 CQNTINUE

J segment, number in a cross - sectional plane where 1<J<(NCT- 1)

K', longitudinal.curve to be modified in segment J; 1 for yo, 2 for y,,

3 for yh,.4 for ys, 5 for zo, 6 for zj, 7 for h, 8 for zs

(see Figures 6 and 7).

MLT number of longitudinal. segments to be.specified as ,straight lines,

MST number of longitudinal points where finite, left - handed slopes':

(dy/dx.or dz/dx) are specified.

M2T number of longitudinal points where finite, right --handedslopes

are specified.

Note:' Comments in:the note'after the description of -N2T in Step 2 apply

here also,, except MS(IS) replaces NS(IS), M2(12) replaces N2(12), and

the slopes are (d /dx or:dz/dx) DYX(IS) at MS(IS) and (dy/dj or db/dx)

-.DY2(12) at M2(12). However, infinite-solpes are input-separately he-reo

MIT- number-of-longitudinal stations where infinite slopes in the longi-

tudinal direction are specifiedo .

ML(IL) longitudinal-station number where the beginning ofa straight line

segment is specified. The straight .line will terminate at,the next
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longitudinal station ,

M2(12) longitudinal station number,.where a right - handed slope, iS

specified (see note above)

DY2(12) right - handed slope (dyfdx or dz/di) at.M2(12)

MS(IS). longitudinal station number where a left - handed slope is

specified (see note above).

DYX(IS) left - handed slope .(dy/ or d;/dx) at MS(IS) .

MI(IT) longitudinal station number where the right.- handed slope is

specified as infinite.
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Appendix C (Continued)

Description of Output

The data described in Step 1 of the Description of Input are printed

using the same nomenclature, For each cross-sectional plane, the data described

in Step 2 of the Description of Input are printed with the same nomenclature

except YB and ZB are the y and z coordinates of the input data pointso Additional

output for each cross section are:

AB,C,D,E cbefficients of conic section given by eq,: (1)

SGN sign to be used in eq. (A4)

SLO, SL1 siope dz/dy in local coordinates at the beginning and

end of a segment, respectively,

YB(CALC) ZB(CALC) and i corresponding to input data points, but cal-
culated from conic section equation.

YY(IJ,K) Coordinates of four points used to define conic
section in cross-sectional segment J at longi-
tudinal station X(I)
K l'for y0, 2 for yl, 3 for y 4 for ys
5 for zoo 6 for Zl, 7 for zh 8 for s (see Figure 6)

The data described above are printed for each cross sectional plane, Then

the longitudinal slopes computed at each cross section by the method of splines

(before any modifications are made) are printed, where

I longitudinal station number

J cross-sectional segment number

K same as K described in YY(I,J,K) above

YXL(I,J,K,) left - handed longitudinal slope, (d5/d; or dz/dx)

YXR(I,J,K) right - handed longitudinal slope0

If modifications are made to the initial spiine-fit for the longitudinal

curves, the data in Step 3 of Description of Input are printed with the same

nomenclature, and then the modified left - handed (YXL) and right - handed (YXR)

slopes are printed.
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Next, the coefficients for eq. (18) are printed for each longitudinal

station I and cross-sectional segment J.

In the example used here, the following data are calculated and printed

for prescribed longitudinal (x) and circumferential positions (4) relative to

the reference point yr~zr"

X, PHI x

FDFXFP f, f/Ix a af/O

FXX,FPPFXB a32f/ax 2  a 2f/8a 2  a2f/a;9g
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Appendix C (Continued)

Program Listing

from IBM 360/175 Computer

Contents, Page

Main Program for Determining Geometry . o. ,o O a 00 0 0 o 0 0 o 44

Main Program for Using Geometry Subroutine Package 8 o8 0 ,o 44

Subroutine INGEO . . a 8 . ' 'a 0 . 0 0 44

Subroutine SPLX . 8 8 * 8 8 8 8 8 8 0 t o o 45

Subroutine SPLINE 8 8. 8 8 8 . . . .. 8 . 8 8 .0 0 0 48

Subroutine GEOM 8 8 8 8, 8 0 -0 0 a 8 8 8 o a o e 0 49

Subroutine FCN .... o ,, o 8 'o 8 , o o 0, o .O 0 51

Subroutine DERIV . a .0 0 0 . . o 51

Subroutine LINEQ . , 8 8 .8 .8 . .8 .. 8 8 8 o o 8 0 ,o o o 53

Subroutine LSTSQ 8 'a a a a 8 . 8 8 0 . 8 8 8 8 8 0 0 . .0 . 0 53

Function FZ ."0 8 ,8 8 8 0 .0 0 a 8 . 0 . 0 . 0 0 0 58
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$JOB NCS.MAE.B2630/DEJARNETTEtTIME=309PAGES40PLINES=54
C MAIN PROGRAM FOR DETERMINING GEOMETRY
C EXAMPLE - 70 DEG DELTA WING

WRITE13t6661
666 FORMAT(Il1)

CALL INGEO
WRITE(3 100)

100 FORMAT(///,171XtHX14X3HPHIe14XtlHFtSX,2HFX/t,18X,2HFP,13X,3HFXX
1l4X 3HFPP 13Xt3HFXP)
00 2 Imlt4
X=.3
IF(I.EQ.2)Xm1.
IF( I.EQ.3)X=2
iF(ilEQe4)X@9.
00 2 J1t,4
PHm(J-1)*3.141592/6
CALL GEOM(XPHeO.tO..FeFXtFPFXXtFPPFXPI

2 WRITE(3101)XPHt,F,FXtFPtFXXtFPPtFXP
101 FORMATI/,8Xt4E16.7,/,9X4E16.7)

STOP
END

C MAIN PROGRAM FOR USING GEOMETRY SUBROUTINE PACKAGE
SEXMPLE - 70 DEG DELTA WING

COMMON/COM2/X(20) YY(209108) YXR(2010O,8tYXL(20,10,8hYL(2431,
,NX, NCT
READile3O1)NXeNCTNR

301 FORMAT(3151
READ( 130011X(I)IultNX)

300 FORMAT( SE16.7o
READ(1,3001(((YYiJr#K),K-1,8trJUltNR)eJlltNX)
READ(1l300)(((YXL(ItJKtKm=,8l)tJulNR)9,12,NX)
NZ=NX-1
READ(t1300)((YXR(ItJtKltKe8)JmeteNRit11tNZI
WRITE039400)

100 -FORMATI/// 1Xe 1HX 14X03HPHI,14Xt1HF 1SXe2HFl/ 18X 2HFPg13Xe3HFXX
1914Xt3HFPPtl X 3HFXP
D00 2 1*1,4
XXs.3
IF( .EQ.2)XXl.
IFI I.EQ.3)XXi2.
IF(I.EQ.4)XX"S5
00 2 Jl.,4
PHo(J-)11*3141592/6
CALL GEOMIXtPHt00.,pt,FFXFPeFXXFPPFXPI

2 WRITE3,10KOIXXtPHFFXtFPFXXtFPPtFXP
101 FORMAT(/tBSX4E16.oTe/9Xt4 E16.7)

RETURN
END

SUBROUTINE INGEO
C READ INPUT DATA AND CALCULATE COEFFICIENTS
C NY& I FOR BLUNT NOSEs 2 FOR SHARP,POINTED NOSEe 3 FOR CUT OFF NOSE
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CNXwNO. OF LONGITUDINAL 'STATIONS, NCT IS NOe OF CONTROL PTS,.,v NJ= NO.
C OF LONGITUDINAL LINES TO BE MODIFIED
C NP=l FOR PUNCHING DATA CARDS

--COMM-ON/COM2/X(-20)tYY( 20, 10,-81) YXR( .20,10,8) ,YXL(2O, 10,8),YLI2,4,3)t
INK ,NtT
COMMON/COM3/A( 5-) AXI 5) AXKE 5)
DIMENSION NAM(20)
READ( It I00)NAM

100 FORMAT(20A3)
WRITE(3tlOI)NAM

101 FORMAT(4X, 20A3)
READ( 19102)NY9NXNCT#NJtNP

102 FORMAT(515)
WRIrE1392o1) NYNXNCTNJNP

201 FORMAT( I, X, 3HNY=,15,3X,3HNXm,15,3X,4HNCT=,15,3X,3HNJ=,15,3X,3HN
1P=t 15)
DO 2 I=1,NX
READ(I , 03)XI I)

103 FORNATIF1O.5)
2 CALL LSTSQ(INY)

CALL''SPLX(NY#NJ)
"WRITE(3,202)

202 FORMAT(/,11X,1HI,3X,1HJ,6X,4HAE1),'12X,4HA(2),12K,4HA(3),f,4lX,
I4HA(4)tIZXv4HAES))

* IB=1
IF(NY.,LEo2) IBs2
NR=NCT- 1
DO 3 I=IBqNX
DO 3 J=1,NR

* CALL FCN(ItJXII))
IF(YLI1,1,1).EQ.YL( 1,2,1).AND.YL(2,1,1).EQ.YL(2,2,1) )GO TO 3
CALL DERIV
WRITE(39203)IJA(I1),A(2),AE3),A144),A(5I

3 CONTINUE'
203 FORM4T(/,8X,214,3E16.T,/,33X,2E16.T)

IF INP*NE.1) GO TO 4
WR ITE( 2,301 )NXNCTNR

301 FQRMAT(315)
WRITE(2,300)IX( I ),I=1NX)-

300 FORMATI 5E 16o7)

WRITEI2,300)tI(YXR( IJK),Kusl),lJu1,NR),I=1,NZI
4 RETURN

END

SUBROUTINE SPLXINYNJ)
COMMDN/COM2/X(20),YYE2O,10,8),tYXR(20,10,8),YXL(20,10,8),YL(2,?493),D

IN'tNCT
DIMENSION YI20),YPt20),XP(20),DSt20),*YM420),XM(20),ML(5),M245),DY2

115),MsI 5) .DYXE 5) MI( 5) ,xKtI0
NRnN-1
NO. NCT- I

45



DO 2 J~li0 Q

00 B R029H

3 0S9oTil*+T2**2)
lFVVGE,2BGO TIO 4

,l V 0i2J~r0 MEOYP(1I=DS(2)/YY(2,JKI

CALL D , M Y M Y 4 ) ,1 9  Y P

YXRq IvvK=lE20
9F6vY~qoK9E 0 lXR( £.JY,=0

GO TO 3
4 CALL SPLlEDSYNvYMl*9loQ-2sYP)

CALL SPL1lE(DSXNXvloqla9g2tXP)
IB=l.

31 DO 2 119

2 YXR qj9K9-%v LXJK I
URRY~E09 3~203 )

203 .FOR1WA IfIilX,1f413X,HJ,3X,1HK,5X,10HYXL(I JK),6X,1OKYXRI 1,JK),
;3XQIBHFDR INITIAL SPLINE)
DO 32 J-19NQ
WRITE~3v4ftl

401 FORM'AT45X)
DO 32 K=198
WRITE93,5581

558 FORNAUSU
0O 32 Ir-1@N

32 WRIME392O4) 1vJq~YXL(bJK 9 YXREIJ#K)
204 FORMA T1H 3143, ZE 16 a7)

lFiNJ.EQe0lRETURN
DO 17 RJK=1,NJ

READ~ 2 1.0DJvKvMLTvMSTM2TvMIT
100 FORAT615

WRTE0205) JvKoMLTvMSTM2T*M IT
205 F0RH~A7Uf,' v8Xv2HJ=, 13,3X,2HK=,13,3X,4HMLT=,13,3X,4HMST=,13,3X,

I 4H2TcIl3v3Xv4HM!T=v13)
I~i OYG oO)READile100)(MLtIL),111,9MLT)

101 V-ORmm 4q 109F 10-5) )I
IFM2T.GToO)REAoillO1) IMZ(!2),DY2(I:2) ,2=l9t42T)
XF(MST.GT0 O iREAD( id0l) MS( iS) DYX IIS)'. IS=1,MST)
XFMITGTo)READI11lOO)IMI1z),zT=1,vMT)
l~i2ToGToO)WRITE3206)(M2(12),DY2(12),I2=iM2T)
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IF(MIT.GT.O)WRITE('392O8HMIIIT),IT=1,MIT)
IF(MLT.GToO)WRITE(3,209) (MLIIL3,IL=lMLT)

206 FORMAT(//,1OX,2HM2,7Xt6HDY2/DX,/,(/,BX,14,El6.7))
207 FORMAt(/IIOX,2HMSTX,5HDY/DXIE/,8X,14,E16,7))
208 FORMAT(/ ,BX,3H~t4,514[
209. FORMAT( ,8X93HML=,5141

IS. 3

12=1
IT= 1

00 5 1=19,NR
OYY=YY( 1+ltJiK)-YY( I ,JK)
DXX= X( I1+1 3-K XI)
OSS=SQRT( OXK**2+OYY**2)
IF( I.EQ.ML(lL))GO TO 6
IF(l.EQ.t4I(ITI)GO TO 7
IF(I.EQ.M2(12))GO TO 8
IF(I.EQ.MS(IS))GO TO 30
IF(KA.EQ.1)GO TO 9
GO TO 5

9 MB=I
MB1=I41

DO 10 IZ=MB1,N
ME=IZ
M= ME- MB +
DYE=YY( I Z,9J,9K)YY( IZ- 1,tJK)
ODXE=X( I Z)-X( I Z-1.)
DSE=SQRT( DYE**2+DXE**2)
.IF(IZ.EQ.MS(IS)IGO TO 11
IF(lZoEQ*MLIIL))GO TO 12

10 CONTINUE
6 YXR( I.JK)=DYYIDXX

YXLI I+1tJtK)=DYY/Dxx
IF(I.GE*NR3GO TO 5
DXE=X( 1+2)-X(1+1)
BYE-YY( 142*JtK)-YY( I+1,PJKl
DSE=SQR T(DXE**2.OYE**2)
XP( 1)=OSE/(DXE+DYY/DXX*DYE)
YP(13=XPfl)*OYY/DXX
YXRII+ItJtK)=DYY/DXX
KA1l

IF(1.EQ.MS(IS3.AND.IS.LT.MST~lS~ISG1
GOTO 5

7YP(1i)=DSS/DYY
XP(1)=O
YXR(lt.JtK)=loE20
IF(IT*LTMITIWTIT+l

GO TO 9
8 XPg1)oDSS/IDXX+0DY2(12)*DY
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30 ( XP LYM R29+

GO TO 9

* GO 70 1

vi YR DO n O

14 CUNTENUE

l~i0 LE.RM3 TO IG
* CkLL SPE~D~o 7 o~ V1gYP(1)gYP(Mi91eypI

15 YXML~vvNDV q l/PlQ)

5 COTIUE

40.2 FORoA~q46I~YXL~l4X,,KXg1He,1IH,12ie5X,6HYXR1eI2e

DO 403c~o

210 FOHAV MM~2A6e7D

END

SUUVM SPLXW9HqDEvKvAMvEvG9NvFP)

C. E IS LEFV DEM IS RIGH4T DERVgN=l FOR E & G SPECIFIED.
C NO0 FO E SPEIFEDAN-l FOR NEITHER SPECIFIED AND MR0 AT BOTH ENDS
C Nc:-2 FOR N AVED09T NEXT TO END POINTS
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IF(N.EQ.-2)C(1)=-1.
D(1)=3.*('(DE(21-DE( I))/H1-E)/H(2)
IF(N.LT.OIDl 11=0.
A( K )'=5
IF(No Ego-it A(K I-0a

BF(N*) )AK1.BK
IF(N.EQ.O)A(K)-BfK)

C(K)=0.

IF(N*LE.O)DK)=O
Q( 11=-C(U)
U(1)=D(1)
P11)=511)
DO 20 J=2,K
IF(J.EQ.K)GO TO 21
B(J 1=1.
C(J)=H(J+1J/(H(JI+H(J+1))/2*
A(J).*5-C(J)
D(J)=3.*t((DEIJ,11-DEIJ))./H(J+))DEJIDE(J-1))/H(J))/(H(J)+H(J+

21 PIJ)=A(J)*QIJ-1)+BIJI
* Q(J)=-C(J)/P(J)

20 UIJ)=(D(J)-A(J)*UIJ-1))/PIJI
AM(K)-UK)
KMI=K-1
00 22 J=1,KMI
JR=K-J
AM(JR)=Q(JRt*AM( JR+1).U(JR)

22 FPIJR+l 1=(AM(JR,1)/3+AM( JR)/6)*HIJR+1)4(DE(JR+1)-OE(JR) )/H(JR+1)
FPtI)in-AMII/3-AM421/6)*H21.DE(2)DEt1)1/H(2)
RETURN
END

SUBROUTINE GEOM( XX.PHYRZRFFXFPFXXFPPFXP)
COMMON/COM2/X(2O1,YY(20.1O,8),YXRI20,10,8),YXL(2OlO.B),YL(29

493 )O
1IX9NCT
COMMON/COM3/AAI 51 AXI 51,AXXI 51

C LOCATE I AND J FOR X AND PHI
JX=NCT- 1
00 2 1=291X
IFIXX.LTeX(I)IGO TO 3

2-CONTINUE
I= IX

3 DO 4 J-19JX
CALL FCN(IJXX)
DYJwYLf 1* 2# 1) -YR
DZJ=YL (29 29 1)-ZR
FJ=SQRT(DYJ**2+DZJ**2)
PHJ=ARCOS(DYJ/FJ)
IF(DLJoLT.0 IPHJ=2e0*3. 141592-PH j

4 CONTINUE
JmJX

5 CALL DERIY
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SUBROUTINE FCN( I,JXX)
C CALCULATE X-VARIATION FROM SPLINES
C IN YY(IJtKlP I AND J ARE GEOMETRIC POSITIONS K= 1 - Y0,2 - Ylt
C 3 - YHe 4.- YS, 5 THRU 8 SAME FOR Z
C -YL(LtMhNoe L=1 FOR Ye 2 FOR LZ M = 1-FOR YO, 2 FOR Y19 3 FOR VH9 4 FOR Y
C Na 1 FOR F92 FOR FX,3 FOR FXX

COMMON/CDM2/X(20)oYY(20108) ,YXR20,108) eYXL20e10B ,YL(2,4,3)|
IIX,NCT
DIMENSION F1393)
DX=X( I)-X( -1)
U=(XX-X(I-) )/DX
U2=U**2
U3=U**3
F( 19 1)= 2U3-3*U2+1
F(2, 1)=U3-2*U2+U)*DX

3F(391)=(U3-U2)*DX
F(1,2)=(6*U2-6U)/ODX
F( t1, 3)=(12*U-61 /DX**2
F(2,2 )= ( 3UZ-4*U+1)
F( 23)= (6U-4)/DX
F(3,2)=3 U2-2*U
F(3,3)=(6*U-21/DX
00DO 2 L=1,2
DO 2 M=1,4
K=4*(L-1)+M
IF(YXR(I-lJtK)o.GE.1.E20)GO TO 3
DO 5 N=1,3
KK= 1
IF(N.GE.2)KK=O

5 YL(L,M,N)=(YY(I-IJe,K)-YY(tIJK))*Fe1N)1+YY(IeJKi*KK+YXR(I-leJK)
1.*F(2,N)+YXL(ItJK)*FI39N)
GO TO 2

C SEGMENT BEGINNING WITH INFINITE SLOPE
3 T1=YY(I,JtK)-YY(I-1 JK)

T=T1/DX
A=2,0*T1*(T-YXL(IJK))
B=T*(2oO*YXLII,JK)-T)
SGN=1.O
V=XX-X(I-1)
IF(TI.LT.O)SGN=-i.O
DY=SGN*SQRT(A*V+B*V**2)
YL(LtMtl)=YY(I-LoJDKl+DY
IF(DY.NE.0O) GO TO 4
YL(LtM2)=Oo0
YL(LMt3)=0.0
GO TO 2

4 YL(LM2)=(A+2.O*B*DX)/2.0/DY
YL(L9Me3)=IB-YLIL9M,2)**2)/DY

2 CONTINUE
RETURN
END

SUBROUTINE DERIV,
C CALCULATE A(I)vA(2),Af3Al4),A('5) AND THEIR DERIVATIVES WoRToX
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AXXI I )=0
DO 8 J=I,5 A().*X IJ-I *(JG(AXXgI1=AXX(I1A(J) 11J-2A()*XIj)

8 GSIJ)=GIPJ)
CALL SIMQIGSvAXXo5,5,KS-)-
IFIKSEQ0 1) GO TO 9
RETURN

9 CONTINUE
AA( 1)=-1
AA 12) s-I

* CALL LINEQ(GvAA)
AXI 1)=-AA(4)*GX( 1,41-AA( 5)*GX(1,53
AX( 2)=-AA(4)*GX( 2,41-AA( 5)*GX(2,5)-
CALL LINEQ(G9AX)
AXX(I)=-AA(4)*GXX(194)-2*AX(4)*GX(194)-AAI5)*GXX(15)n2*AX(5)*GX

* 1.01,5
AXX(21=-AA(4)*GXX(2,4)-2*AX(4)*GX12t4)-AA(5)*GXX(2,51Z2*AX(51*GX

1(2951
CALL LINEQ(GoAXX)
RETURN
END

* SUBROUTINE LINEQ(GAA)
DIMENSION G15,51,AA(5)
DEN=G( 14)*G(2,5)-GI 1,5)*GI294)
IFIDEN*EQo01G0 TO 3
UP4=AA( 1)*G( 2*5)-GI 1.5)*AA12)
UP5=G(1v41*AAf2)-AAf1)*G(2q41
AA( 4)zUP4IDEN
AA( 5)=UP5/DEN'
DO 2 1=193

2 AA(I)0O
RETURN

3 WRITE13v202)
202 FORMATf//1,ZXvI9HDENOM, IN LINEQ IS 0,11)

* RETURN
END

SUBROUTINE LSTSQ( ITNY)
C.FOR THIS SUBROUTINE Z IS USED FOR X, X FOR Yv AND Y FOR Z

COMMON/COMZ/l(201,YY(20,10,8) ,YXR(20910,8),YXL(20,1O,8)gYL(2,4v3),
lIX,NCT
DIMENSION NC 1O),XB(20),YB(201,DX(10),SDA(1O),CDACLO)gCT(10htAG(IO,
1),BG41O),AB(1O),GG( 10),BB(10),AA(11),GE(-10),BE(1O),AE(IOhvEE(10)oX,

DIMENSION NL(5),NS(5),DXX(51hDY(5),'N2(5),0X2(5),DY2(5)
COMMON/COMI/XC(1O),YC(1O),SA(1O)tCA(LO),SGN(10)pA(2O),8(10)vCtl0~,

1D( 1O)vE( 101
* M=NCT-1

IFfIToEQ~10ANDoNYLE.2)GO TO.32,
READ( 1,11 )NLTNSTN2T
READI 19 l01J(NClJJJ1,NCTP

101 FORMAT416151
**NL111=0

* -**53
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YY(ITvlQql)=XC(IQ)
YY(ITiPlQv2)=XC(IQ+l)
YY(ITPIQ%,3)=(XCIIQ)+XC(IQ+I))/2
YY(ITvlQip4)=YY(ITpIQv )
YY(ITO-IQ95)-YC(-IQ)
YY(lT9lQv6)oYC(IQ+I)
YY ( I T o No T)m I YC ( IQ + I I +YC I TO 11 /2
YY(lT9lQw8)=YYIXTvIQ97)
IF(ILeLToNLTIIL=]L+l
IFIIL.LT.IIIL=l
IF(IQ.EQ.NS(ISI.AND.IS.LT.NST)IS-IS+I
KA=l
A(IQ)=0
B(IQ)=O
C(IQ)=O
D410=0
E(IQ)=l
SGN( IQ)=l
ZM=o
ZN=O
WRITE(39301)IQQA(IQI*B(I.Q)vC(I-Q)tD(IQ)tE(-IQ)vSGN(IQ)vZMIPZN
K=NCIIQI
L=NC(IQ+I)-i
DSB=SQRT(DYI**2+DXI**Zl
IF(DSBoLEol.E-20)DSB=l
CAA=DXI/DSB
SAA=DYI/DSB
00 33 JJ=KvL
XHL=(XB(jj)-XBIKJ)*CAA+(YBIJJ)-YBIKI)*SAA
BM(JJ)=XC(IQ)+XHL*CAA

33 OZ(JJ)=YC(IQI+XHL*SAA
GO TO 17

10 DYI=DY(IS)
DXI=DXX(IS)
IF(ISeLT.NSTIIS=IS+l
GO TO 15

19 DY1=DY2(121
DXI=DX2(IZ)
IF(I2eLT*N2TJI2=12+1
IF(ISDLT*NST)IS=IS+l
GO TO 15

.12 ME=IZ
DYN=YC(IZ+I)-YC(IZ)
DXN=XC(IZ+I)-XC(.IZ)
M=ME-MB
GO TO 7

16 ME=IZ
DYN=DY(IS)
DXN=DXX(ISI

7 DO 14 I=L92O
A(I)=0
DO 14 J-: Iv20

14 G(19J)=O
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00 4 K=2vM
fFIoGE*3)G(191-2)=AG(I-1)

* G(IvID=GG4I-1)Q-BBtI)+AA(1+11
IF i ILE-6N-1 I G4 I,!+1l=BGl I)+AB I + I)
IF i 0oL'E 0(1-2) )G( 191+2)-AGII141)

G1 19 IM- 1)=GEd I-1)
GUIvIMl=BElI)
IFlUoLToM)GfIqIM+1)=AE(I+11)

G( 1M9 I )=BE( II
IFlI ILT.M)G( M91+1)=GE( I)

4 G ( I MM IE E I
13 G IM --Iv1 8 =E(1I

G( M+1v2)=GE 1 J
G(M+19M+1)=EEfll

DO 23 1=1912M
DO 22 JsivI2M
lFfGiIPJD.NE.O)GO TO 23

22 CONTINUE
IF(M.EQ01DGO TO 25
1Z 14-MB- 1
IFt I*GT.3M)1Z=RZ-
IF(NLTeLT.IL)GO TO 24
DO-21 KI~ILoNLT

21 NL(KI-ol)=MLtKil
24 NLT=NLT-1

NLIILD=Il
IF(!ZOEQOXQIGO TO 27
GO TO 12

25 A(1)=1
A1=1/YP/YPN
GO TO 26

27 NL(1L)=1Q01
GO TO 8

23 CONTINUE
CALL SIMQ(GvAq2OJ2MvKS)
IF(KSoEQoI) WRITE03,777)

777 FORMAT(//v8Xo18HN0 SOLN FOR MATRIX)
26 AM=1/YP

00 5 1=1gm

IFlUoEQ0 I)GO TO 6

6 AN=A(M)/YPN-
IF(U.LT.r4)AN=(AAI)*CDA(I+1)-A(1+1) )/SDA( 141)
CAC=A(M+X)*A(I)
AMN=AN*AM
IFICACoLT.AMMNRITE(3#218) CACAMNvI

28FORMAT(///9BXq1OHCAC LT AMN,3X,4HCACgE167t,4X,4HAMNtE16.7,4X,
I '2HI~sI3 9//)
lFfCACLToAMN)A(M-&I)=AMlN/A(I)

57



R-Pq AM oL7,0 I SGW 9 0-t
Vl- A 19 D AN
l*u A q 9 D YAM

,%S KD -- rqJP4XSL*CAtki-YSL*SA(lI
VSiaD-VCiJ)+XSL*SA(Il,'u-YSL*CAilI

vvqxyQjvl)=xciji
vvq xTvj92)=XC(J+ll

VVilTvJg4)=XSll)

vvq RVoJq0=VclJ+l
'fVqRVvJvVQVH(l)

WR VMv301) JeAlID90ggDgCilDvDillgEtl)PSGN(I)PZMtZN
30A FORNIWT ivGX914ip4EIG.7oei9l3AvEi6o7tFl6o5t2El6o7I

00 5 JJ=KvL
VHL-FZ!IX@JJ)PloJPBMIJJ PBZIJJ))

2 9 FORMATgf/gSX95HPTeNOv5Xv8HYB(CALC)98XiPSHZB(CALC)v/v(BX91592EIG.7)I
WRITEa39220)ITPITPITolTelTvITPIT91T

220 FORNkTC, /gLIX91H.J95X93HVYI99295HvJtl)96X93HYY(vl295HvJ92)t6X93HYVd
'RvR295HvJ93196Xt3HYY191295HvJ94l9/9l8X93HYY(9l2v5HtJt5)v6Xe3HYYig
912igSHQJip6 96X93HYV(vl2TSHvJ97)i?6x93HYYt9l2t5H9J98)I
au 20 lmlqmz

20 WRITEq39221) lv(VYilTqlqJ)vJ=198)
229 FORHATq/gdXtl494EI6-79/vl3Xg4El6o7)

RETURN
32+ 00 Sa gz:ivm

Do 3
31

RETURN
END

FUNCTION FZ(XXglvjj,2XXBvVV')''*"
COMMUNICOMI/XC( 10) OC l0DvSA(l0),PCAl 10),PSGNfl0)qA( 20)gB( 10)9.Ci 1019

u Z. a

EPfCfl)aEQm0)GO TO 2



T4=Tl**2-T3
IF(T4.LT.O)GO TO 3
FZ=(-T14SGN( I)*SQRT( T41) /C( 1)/2

7 XXB=XC(JJ)+XX*CA(I)-F1*SA(I)
YYB=YC(JJ )+XX*SA( I)+FZ*CA( I)
RETURN

2 iLZ-T2/T1
GO TO 7

3, WRITE(3g2221 T4
222 FORMATI///t8X9 15HDISCRIMINATE IS9E16o7t3Xt1'NFOR FZ9 SET =0)

FZ=-TICt1)/2
GO TO 7
END
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APPTDIX D

nput and Output for 70* Delta Wing

70 DEG DELTA WING Step 1
1 4 3 14

0o
.65798

4 2
1 2 4

2 0.

=.5396926 0 0 .9396926 0. .664463 .664463 00 939926

.10
4 2

1 2 4 Ste

2 0. 1.

1 . 0 1. 0. .5 .921605 0. .1.064178

10.
4 1 2
1 2 41

2 0. 1.

lo 1. 1 3.27573 .5 4,197335 0. 4,33991

1 1 1- 0 0 1
3

1 2 1 0 0 1 Step' 3
3 "

1 3 0 0 
3



Input (Continued)

1 4 - 0 0
3
1 6 3

1 2 3
1 7 3
1 2 3
1 8 3
1 2 3
2 1 1 0 03-
1

2 3 1 0 03

2 4 1 0 0

2 5 3
1 2 3
2 6 2 0 .0
2 3

2 7 1 0 0

18

2 3

.1

I231



AppeAdix D (Continued)

Outpu

70 DEG DELTA WING

NY. 1 NX=' 4 NCT =  3 NJ* 14 NP= 0

X A~ 0.6579800E 00

N= 4 NLT= 1 NST= 2 N2T= 0

NC* 1 2 4

NL; 1

S DY DZ
.2 0.00000OE 00 0.1000000E 01

0.1000000E 01 O.O0000E 00

PT..NO YB ZB
1 0.9396926E 00 0.OOOOOO000000E 6o
2 0.9396926E 00 0.0000000E 00
3 0.6644630E 00 0,6644630E 00
4 0.0000000E 00 0.9396926E 00

A(J) B(J) C(J) 0(J)
E(J) SGN(J) SLO(J) SL1(J)

1 0.O000000E 00 OOOOOO000000E 00 0OOOOOO000000E 00 0.0000000E 00
0.1000000E 01 1.00000 OOOOOO000000E 00 0.000000E 00

2 0.1000000E 01 -0.0000000E 00 0.9999935E 00 -0.1328925E 01

-0.1328925E 01 -1.00000 -0.10000000E 01 .Oo1000000E 01

PTNO YB(CALC) ZB(CALC)
1 0.9396926E 00 0O000000E 00
2 0.9396923E 00 .-0.3371769E-06
3 0.6644623E 00 0.6644634E 00
4 0OOOOOO000000E 00 0.9396926E 00

J YY( 2,J,1) YY( 2,Jt2) YY( 2,J3) YY( 2,J,4)
YY( 2,J,5) YY( 2,J,6) YY( 2,J,7) YY( 2,J,8)

1 0.9396926E 00 0.9396926E 00 0.9396925E 00 0.9396925E 00,
0000000OE 00 0.0000000E 00 :.0000000E 00 0.O000000E 00

2 0.9396926E 00 0O,O000000E 00 0.6644629E 00 0.9396926E 00
0OO000000E 00 0.9396926E 00 0.6644628E 00. 0,9396925E 00
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X = 0.1000000E 01

Na 4 NLT 1 NST' 2 N2T 0

NC= 1 2 4

NL= 1

NS DY DZ
2 0.OOOOOOO000000E 00 0.OOOO00000E 01
3 .O, OOOOOQE 01 O,000000E 00

PT.NO Y8 B
1 0.1000000E 01 O.Q000000E 00
2 0.1000000E 01 O.OOO00000E00
3 0.5000000E 00 0.9216050E 00
4 O.OOOO000E 00 0.1064178E 01

J A(J) B(J) C(J) D(J)
E(J) SGN(J) SLO(J) SL1(J)

1 0OOOOOOO000000E 00 0OOOOOO000000E 00 0000000E 00 0.OOOOOO000000E 00
0.1000000E 01 1.00000 0.0000000E 00 0.OO00000E 00

2 0.1000000E 01 0.1244857E 00 0.1007751E 01 -0.1460299E 01

-0,1554019E 01 -1.00000 -0,9396920E 00 0,1064178E 01

PT.NO YB(CALC) Z8ICALC)
1 0.1000000E 01 0.OOOOOOOE 00

.2 0.9999997E 00 -0.3240224E-06
3 0.4999997E 00 0.9216052E 00
4 0.0000000E 00 0.1064178E 01

J YY( 3,J 1l) YY( 3rJ,2) YY( 3,J#3) YY( 3,Jt4)
YY( 3,J,5) YYI 3vJ6) YY( 3*Jv7) YYi 3,J,8)

1 0.OO00000E 01 0.1000000E 01 O.lOO0000E 01 01000000E 01 0000001
0.O000000E 00 00000 00E 00 0,0000000E 00, OoO00000E 00

2. 0.1000000E 01 .. OOOOOOOE 00 0.6886622E 00 "0.9999999E 00
0O000000E 00 0.1064178E 01 0.776160E 00 0.1064178E 01

X . 0.1000000E 02

N= 4 NLT= 1 NST= 2 N2T 0

S... 63



@DY
2 00000000E 0 00000E 00 00 1000000 O01
B O0OOO000OE 01 Oo0000000E 00

PT40 VB Z8
I 0o1 o0000E 01 ,o0oo00o0oo 00
S 0~,OO000000E 01 0.3275730E 01
3 0~O500000E 00 0.4197335E 01
4 o0 0000000E 00 0o4339910E 01

J UADJ 8J Cid) i
E(J SGN(J) SLOIJ) SLI'

0.0000000E 00 OO0000E 00 Oo00000000E 00 OO00000E 00
00000000E 01 1000000 0.00000E O0 Oo0000E 00 00000E 00

8 0.1000000E 01 0,1244883E 00 0.1007780E 01 -0.1460300E 01
-0.1554021E 01 -1i00000 -0.9396911E 00. 0.1064179E 01

YPTowD VBCALC) ZBICALC)
I 0100000OE 01 0.OO00000E 00,
2 0.9999997E 00 Oe3275729E 01
3 0a4999997E 00 Oo4197334E' 01 .
4 O.OO00000E 00 0.4339910E 01

VY( 4vJvl) YY( 4J23 YY( 4,J,3) YYl 4vJv4)
YY( 4vJ95) YY( 4qJe6) YY( 4,J,7) YV( 4 -J983

1 0 .1000000E 01 1000000E 01 0.000000E 01 0.1000000E 01
OoO00000OOE 00 0.3275730E 01 0.1637865E 01 0o1637865E 01

2. 0-,O00000E 01 0.0000000E 00 0.6886611E 00 0.O000000E 01
0O3275730E 01 O04339910E 01 0.4047346E 01 0.4339909E 01

J K YXL(IvJvK) YXR(IvJK) FOR INITIAL SPLINE

S1UUUUUUUUUUUUU UUU OA0OO00000E 21
I 1 O3187567E 00 0 3187567E 00

13 0.1068660E 00 0.1068660E 00
4 1 -0,1074312E 00 -u0O74312E 00

1 1 2UUUUUUUUUUUUUU 00 1000000E 21'
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00 3LEtyLOTO- 00 3LELO0O- 4 Z 4
00 ' 0 39598901*0 00 3969890100 4 Z £-I
00 3L9SLPE*O 00 L9SLTE0O 4 l Z
1? 300000010 nnnnnnnnnnnnnnnn4 Z I

IO-3S6B061I0- 10-3f1TZ61V~0" £ Z t
10-3L4yZZ*0 T0-3LS44yZ0 C Z f
00 3E£SB9E O ... 00 3ESSE910 E 1 Z
I~ 300000010 nnnnnnnnnnnnnnn£ z l

00 30000000"0  00 30000000"0 Z Z '4
00 30000000"0 00 300000000 Z Z f
00 3000000"0 00 30000000O0 Z Z Z
00 30000000"0 nnnnnnnnnnnnNNnnz z.. 1

00 31IELOT'O0- 00 3Z2TELOTO I z 4
00 30998901*0 00 3099890*'0 1 z £
00 3L9c5L9E1*0 00 L96L8TED0 T Z?
Z 0ooooooio 0000n0 nnnnnnnnnnnnn z .. I

00 308LSIEV0 00 30LS1££0C B 40
Z0-30f6SS£*' 0 0-B0E6S6 0 S K a I
*zo -3 90L0 V*0 -Z0-3Z90Z0 0T- S 1 :Z
00 300000000 nnnnnnnnnnnnnnll fl i K

00 30LS1££O 00 30OLGIE"O L 4
ZO-3BOC6SSE4 Z0-30£69SS4;0 L I -f
ZO-3ZE90LO0'O- ZO-3ZE90ZOT'O- Z I Z
00 30000000"0 nnnnnnnnnflnnnnnn L 1

00 312010690 00 31Z0069*0 9 1
.... ZO-3Z9?96L°O 0O-3 9Z?96L0 9 1 6,

0Z-39 SLS6 I0- 0Z-3 98LtS6100' 9 'Z
00 30000000'0 nnnnnnnnnnnnnnnnflflflflflflflflfl9 .

00 30000000*0 00 00000000 9 .4
00 00000000 00 300000000 6 1 £
00 30000000°0 00 30000000"0 I Z
00 0000000"0 nnnnnnnnnnnnnnnn .-' l K

00 ILELO 1- 00 3LTEILOT*O- 4 7 t
00 3999890100 00 3999890100 4 K. £I
00 3ZLSLIT£O 00 ZLSL8TO£O t Z
iZ 3000000 0 flNNNnnnnnnnnnnnnnn* i I

00 3LTELO0O0- 00' 3LT£L1L -O -  E I 4
00 3999890T*0 00 3999890100 f I £
00 3 LgWI£0 00 3ZLUSLB O 1 .-,
S30000001'O0 flflflflflflflflflflflflflflflflE

00 3~TE 4O°O0- 00 3I1EtLOI*O- Z I 4
00 309989010 00 309989010 z I '
00 3L9SL £°O 00 3L9SL8IE00 Z T Z



1 2 5UUUUUUUUUUUUUU 00 0000000E 00,
2 2 5 -0-1954786E-02 -0-1954786E-02
3 2 5 ' 00 96261E-02 00 7964261E8-02
~ 5 00690102RE 00 o00 901021E 00

1 62 6UUUUUUUUU UU U CoO00000E 21
2 2 6 004625672E 00 . 04625672E 00

2- 6 o 3R3745E 00 00 3l73745E 00
2 6 04117222E 00 00A117222E 00

2 TUUUUUUUUUUUUUUUU 00 1000000E 21
~. l 0.3236457E 00 0o3236457E 00.
S 2 7 0o3088703E 00 00o3088703E 00
S 2 7 0.4187793E 00 004187793E 00.

A 2 8UUUUUUUUUUUUUUUU 0o0O0000E 21
2 2 8 0.4625650E 00 00 4625650E 00.

2 8 0e3173720E 00 0o333720E 00
4 2 8 0.4117249E 00 004117249E 00

J-. a' o 1 MHLTo I MST 0 M2T= 0' MIT=

Wo 3

V XLI I loI N)9 I VE 11

~UUUUUUUUUUUU 0o1000000E 21
2 0.3639706E 00 0o3630T06E 00
3 0O0000000E 00 0.0000000E 00
4 0 0 0000000E 00 -o0 174312E 00

jr A R 2 .HLTo a HE 0 2T 0 MIT= 3

I YXLilE .I 21 VgRliv 19 2)

IUUUOUUUUUUUUUUUU 0.1000000E 21
2 0.3639706E 00 0.3639706E 00
3 0,O00000E 00 00 0000000E 00
4 0.0000000E 00 -0.1074312E 00

j A Kw 3 HLTa I MSTO 0 M2T= 0 MIT=



£9

00 3081.5TEEO 00 30S86'181 *0 4
00 30S86180 00 300000000 £
00 30000000"0 00 300000000, 2Z
00 30000000"0 nnnnnnnnnnnlfNflnn

(L 1 'I)XA L U T I)1XA I

E£ I alW

0 =IIW 0 =LEW 0 =ISW £ =1lW L 4A .=r

00 3TZ0069"0 00 ROOL6E9o t
00 300L6E9'0 00 00000000 E
00 30000000"0 00 300000000 z

(9 'T 'I)VXA (9 8T 6I)1XA I

£ Z T =IW

0 .=LIW 0 =KW 0 l=ISW 6 =lW 9 =) I =mr

00 LIiELOT*0- 00 300000000 
* 00 300000000 00 30000000"0 £

00 3BIL66E9O 00 34IL6C9£0 z
,i 30000001o0 nnnnnnnnnnnnnnflfll

4 61 4I)VXA I I 61 I)IXA I

I wIw

1 =IIW 0 =IZW 0 nlSW I =ilW t =)i I mr

00 3L1£tLOI0O- 00 300000000
00 30000000"0 00 300000000 E,
00 3tIL6E960 O 00 3UL6E9£0 Z
i 3000000 0 l nnnnnnnnnnnnnnnn

(E ' =I)XA 9EI J)1XA I

.=1W



J- I Kn8o3~ NSTh 0 M2Tzm 0 MITo 0.

VYLL q 1 19O V3

Suu~UJuuuuuuuuuuuu 0 0 0000000E 00
01000000E 00 010 00000GE 00

S0 00000000E 00 0181SON Do
4 011819650E 00 0033RDTOO 00

o 2 WL1 1 0 w2y U. slw

g LP2v 1 V 2 v 1)

auu$uuuuuuuuuuuu O.R000000E 21
2 0-,3039706E 00 Do-2639-606E 00
3 0.000000E 00 00000000E 00 -

Oc0O000000E 00 -OoRD74312E 00

J;2 Ka 3 ML~m A 1 0 M2T -0 MIT=

P~i 3

9 VW1 29 ) Yx~nv a 3

iWuuuuuuuuuuuuuu&u 0 0 1000000E 21
2 0AT726953E 00 0oi726953E 00
B -0e1192O93E-06 -"0olI12093E'-06

'-001I92093E-06 -O2R283E-01

Jo2 Ro4 LY= I PST 0 M2T= 0 MIT=I

f V 1 2g 1 vxq 29 41.

auuuuuuuuuuuuuuuu O.A00000CE 21
2 Do3639705E 00* OAGI39705 00



69

I '=JW

=1 IW 0 =J2W 0' =.sw Z =1W 9 8 a

00 3E6LL9TtPO 00 30OL6E9f*0 t
00 300L6E9S*0 00 36696f9fO0 f
00 3EL899z0O0 00 3EL894I060O Z
iz 30000001 flfllfllfllfllfllfllfllfl

(L &Z')~X (L &Z dI)IXA

E =1w

=1'1W 0 =lZW 0 =ISW I 11lw L =)I z o

00 UZZZLTIVO, 00 31OL669EO 4
00 3T0L6E9f*0 00 3#?ZL699E0O f
00 3tZL6E9E*0 00 3'4ZL669C*0 7

(9 &Z SI)M3A f9 'aza 'I XA I

I m1w

I 11 0l O=.lZW 0 Uisw E 11lW 9 mx zo

00 31Z01069*0 00 300L6C9f*0 4
00 300L6C9E0O 00 30000000.0 .£
00 3000000090 00 30000000 a
00 3000000000 flfllfllfllfllfllfllfllfl

'- (s &Z 6 MIJXA (5 ..z 61IXA I

F I *W

0 .1W 'a P1lW 0asw- a~lIW. 9-) am Z,:=r

00 L0S4L0I0- L0-384SWE 10 t
L0-38,gtf 1 0 L 0 -L4VZf 10 't



IUUUUUUUUUUUUUUU Oo10O0000E 21
2 @o3639699E 00 0o3639700E 00
3 00S639'00E 00 CsO639701E 00
4 003639701E 00 041172E 00

F Al) A2) A(3)
A(4) AI5)

2 2 0'Q1132472E 01 -0.9536743E-06 -0.1132476E 01
~0o2086741E-05 0.3235974E-06

3 2 -01000010E 01 0o8583069E-05 -0.8830320E 00
0o9797735E-05 0.1088716E-04

S00 0000000E 00 o0000000E 00 0.0000000E 00
-0 o000000E 01. 0.0000000E 00

2 0 0o179822E 00 0 2646446E-04 0.1041781E 00
-0o11a4409E-03 -0.6825432E 00

X PHI F FX
FP FXX FPP ' FXP

OO000O000E 00 0O000000E 00 0.7141427E 00 0.4789243E 00
-0o4168083E-06 -0~1721457E 01 0.6284285E-01 -0.1111489E-05

03000000E 00 0.5235987E 00 0.7185342E 00 0.4492615E 00
0.9015270E-02 -0*1754072E 01 -0.2382276E-01 --0.6265515E-01

0o3000000E 00 0~1O47197E 01 0.7185337E 00 0.4492621E 00
-0.9016611E-02 -01754071E 01 -0.2382181E-01. 0.6265879E-01

3OO000000E 00 0.1570796E 01 0.7141420E 00 0.4789269E 00
003241843E-06 -0 1721455E 01 0.6284434E-01 0.3704963E-05

00OO00000E 01 0o000000 00 0.9999990E 00 -0.2955627E-06
0o1152045E-05 -0.1169780E 00 0.1169729E 00 0.3213953E 00

o.1000008E 01 0.5235987E 00 0.1014950E 01 0.1655378E 00
0.5295887E-01 -0.9172714E-01 0.6944185E-01 0.3039948E 00

Ooi0000000 01 0.1047197E 01 0.1046981E 01 0.3051024E 00
0o5813339E-01 -03356271E-01 -0.,5744129E-01 0.2100322E 00

0l0000000E 01 O1570796E 01 0.1064177E 01 0.3639702E 00
-0.3316336E-06 0e4265173E-06 -0,1409823E 00 0.9466912E-06

0200000OE 01 -0.0000000E 00 0.9396916E 00 -0.1244882E 00
go3214021E 00 -0O1409802E 00 0,2198226E 00 0.3214030E 00

70



0.2000000E 01 0.5235987E 00 0.1133538E 01 0o6936222E-01
0.4050109E 00 -0.1057327E 00 0O5557603E-01 0.4050160E 00

0.2000000E 01. 0,1047197E 01 0,1335164E 01 0.2709887E 00
0.3244193E 00 -0.3524287E-01 -0.4042364E 00. 0.3244169E 00

O200OO0000E 01 0.1570796E 01 0.1428148E 01 0.3639703E 00
0.3481045E-05 0.1960301E-06 -0.7423788E 00- 0.3281959E-06

0.5000000E 01 OoO.0000E 00 0.4032016E-04 0.3095926E 02
-0.4086256E 07 0.7555792E 14 0.1316286E 25 -0.9972746E 19

0.5000000E 01 0.5235987E 00 0.6621871E 00 0.2936798E 06
-0.1827027E 07 0.2014248E 18 0.7795724E 19 -0.1253096E 19

0.5000000E 01 0.1047197E 01 0.1951118E 01 0o.1127432E 00.
0.2170684E 01 -0.9872645E-01 -0.4567570E 01 0o11,83946E 01

0.5000000E 01 0.1570796E 01 0.2520061E 01 0.3639699E 00
0.1118774E-04 -0o6192974E-05 -0.4238317E 01 0o414-8762E-05

OBJECT CODE=  47112 BYTESIARRAY AREA- 24692 BYTES
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O CONTROL POINT

L DATA POINT
k=11 k=l

3o1

k=3

j=2
k-9 k=4

k=5

j=3
k=8

k=6

Figure 1. Control points and data points in a cross section.
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j=2

z

J=3

Figure 3. Local c-ordinate system, illustrated for segment j=2.
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z
LEGEND

1. A.C. < (A/m)j(A/n) hyperbola which gives complex
' 'J ( roots for z

2. AC = (A/r) (A/n)

3. AjC > (A/m) (A/n)

1 1

tan Imj tan 1"(-nj)

0 y

Figure 4. Effect of AC on conic section.
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tan' (-  tan (-nj1

" I

e - j-1

J 
z

Figure 5. Continuity of slope at a control point.
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S- I. -ntermediate point

Yh, h

y

first control point

slope point

J+13 end control point

Figure 6. Four points used to define a segment of a conic section.
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O CONTROL POINTo (o,,io) and (,losi)

O INTERMEDIATE POINT, (h h)

O SLOPE POINT, (ys,zs

Figure 7. Longitudinal curves through the four points used to define

a segment of a conic section..
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O CONTROL POINT

n DATA POINT

Sk=2

j=2 k=4

-2,4

Sk=6

Figure 8. Polar coordinates.



R= 1

Q CONTROL POINT

L, DATA POINT

x7=0,65798 (circle) =l (ellipse)

i=lO (straight line + ellipse) : - -

Figure 9. Geometry of 700 delta~wing. -, , -
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